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Abstract

This communication is devoted to the derivation and numerical implemen-
tation of higher order central schemes on adaptive unstructured grids for ap-
proximating nonlinear hyperbolic conservation laws in several spatial dimen-
sions.

1 Introduction

We consider the following Cauchy problem for the unknown function u : R? x
[0,00) 2> R, d>1:

Opu(z,t) + divi(u(x,t)) = 0 (z,t) € R? x (0,00), (1)
u(-,0) = wo in R?, (2)

where f € C'(R,R?) denotes some nonlinear flux function and uy € L®(R%) N
BV (R?) some initial data. Here BV (R?) is the space of functions with bounded
variation (cf. [4]).

In this contribution we focus on the derivation of second order central schemes
on a general class of unstructured grids in arbitrary spatial dimensions. The only
assumption we use on two subsequent grids is an owerlap assumption, see below.
The second order accuracy is achieved by using a reconstruction and limitation
procedure. Furthermore we propose an adaption strategy for the first and second
order methods where we use the theoretical a posteriori result of the first order
scheme to derive appropriate refinement indicators. We finally implemented the
adaptive second order scheme on a particular choice of meshes and demonstrate the
performance of the method by numerical experiments.

First and second order central schemes on staggered grids for conservation laws
were introduced by Nessyahu and Tadmor in 1990 [8] in one spatial dimension and
generalized to particular unstructured grids in two space dimensions by Arminjon
and Viallon in 1999 [1]. In [7] first order central schemes were generalized to arbitrary
unstructured staggered grids. In addition a priori and a posteriori error estimates
were obtained, by interpreting the central scheme on staggered grids as a upwind
finite volume scheme in conservation form on the intersection grid accompanied by
suitable prolongation and restriction steps. Hence the a priori and a posteriori theory
developed in [2] and [6] could be applied.
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Figure 1: A possible choice of grids at even and odd timesteps and their intersection.

2 Central schemes on arbitrary unstructured grids

For the discretization of (1),(2) let a sequence of unstructured grids (7;")nen be
given. Here n corresponds to the time level. We assume that each grid 7, is is a
non-overlapping partition of R? consisting of polyhedrons T7*, i € I" C N, of finite
diameter. The sequence of meshes has to satisfy the following regularity uniformly:
There exists a > 0 such that for all n € N and all 1 € I™

1 -
o diam(T})* < |T7|, [0T7| < —diam(T})*".

One possible choice of such grids is illustrated in Fig. 1. In order to go from one grid
to another we have to link two consecutive grids 7,* and 77L"+1. Thus, for i € I"*!
we define:

KmmHl(i) = {jeIM TP NI 0},
Kp™ii) = {jeI™| Sy =T noTy " #0}.

The scaled outer normal 1/;;-’"“ to S:‘j’"ﬂ

scaled outer normals on each part of
n,n+1
Sl

is piecewise defined (as the sum of the
SZ’"H contained in a (d — 1) dimensional

hyperplane) and has the length of |

Two consecutive grids have to satisfy the following overlap assumption which
excludes the case that two consecutive grids are equal.

There exists a constant Coy, > 0 such that for alln € N, 5 € I"T!, j € K™ F1(5)

TN
Cov < % < ]-a (3)
T n OT}' has dimension at most d — 2. 4)

As a theoretical tool we shall need an intersection grid 7," " = (T}*"™);cnns1
obtained by intersecting each T* € 7," with each Tj**' € T,"*'. Note that the
intersection of two polyhedrons is again a polyhedron. For i € I™"*! we denote the
set of indices corresponding to neighboring polyhedrons 7;*"" by N™"+1(;) and

the common interface by Sj"*".



The time axis [0,00) is partitioned into intervals [t",#"t1[, n € N, of length
e R

2.1 A review of first order central schemes on arbitrary grids

The idea to derive a first order central scheme on the given sequence of unstructured
grids for approximating the solution of (1), (2) is the following, see [7]:
Let piecewise constant values (ul);cs», n € N, be given.

1. Prolongate the values trivially to the intersection grid 77L”’"+1.

2. Perform a upwind finite volume step, e.g. with the Godunov scheme, on the

intersection grid.

3. Perform the L? projection of these values onto 77L"+1 and get piecewise constant

values (ufth);cpn+1.

When considering the overall algorithm the numerical fluxes introduced in the
second step reduce to evaluations of the continuous flux f in (1) because of the con-
sistency and conservation of the numerical flux and the overlap assumption on two
consecutive grids. The resulting first order Lax-Friedrichs scheme is given explicitly
as follows. For given values u, i € I"™ define values u?”, i€ I"t! by

TP T kn
u — E
n+1 J n+1
JEKm+1(3) |Tz' | |Tz' | jng,n+1(i)

u?“"l =

Fui™.

The advantage of this point of view is that one can analyze central schemes on
staggered grids within the same framework as finite volume schemes on a fixed grid
with appropriate pre— and post— processing. Particularly one can prove the following
a posteriori error estimate (see [7]).

THEOREM 2.1 (A posteriori error estimate)
Assume that the assumptions on the data and the meshes stated above are satisfied
and that the CFL-condition

]' n,n
KV, 00 < 5 (1= a”hP™ € €0,1], (5)

is met, where Viy,, v, 95 a constant such that |f'(s)| < Viy,,.un], foralls €
[Un,Unm]. Let K CC R x RY, w = VU, Un] @nd choose T,R > 0 and zo € R?
such that T €]0, R/w[ and K C Uy<;<7 Br—wt(w0) x {t}. Then we have

lw = unllpr ) < T(lJuo — unle 0)|| 2 ({le—zo <r11}) + aQ + 5V/Q), (6)



where a and b are computable constants (see [7] for details) and
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2.2 Derivation of the higher order central scheme
In what follows, we will use the same point of view as above to derive second order
central schemes on general unstructured staggered grids.

First, we introduce linear reconstruction operators L™ : PC(T;*) — PL(T"),
where the spaces PC(7,") and PL(7,") are defined as

PC(TY") = {p€BVRY)| ¢|r, =ci e RT; € T;'},
PL(T;") := {p€ BV(RY)| ¢|r, € P, T; € T;"}.

Here P; denotes the space of linear functions. In addition we assume that L™ fulfills
the following properties for all v, € PC(7;*), n € N:

Conservation:

/ vy = / Ly, forall T} € T,

Non oscillatory:

|L™vp|Bv < |vn|BV, [|L"vp|| Lo < ||vn||Loe-

Such reconstruction operators are for example the reconstruction of Durlofsky, En-
gquist, Osher [3] or the reconstruction of Wierse [10] together with some suitable

limiters.

Let us derive a continuous version of the second order central scheme which uses

generalized Riemann problems, see [4].

Let piecewise constant function u} on 7,*, n € N, be given.

1. Form the functions L™u} which are piecewise linear on 7;".



2. Prolongate the functions trivially to the intersection grid 7,"*".
3. Let v denote the solution of the generalized Riemann problem
dw +divf(v) =0 in R? x (t",t"), v(,t") =u} in R,

Integration of this PDE gives for i € I™"+!

1
+1y n,n
(';tn ) - |Tn,n+]_| — L Up,
K] i

1
1}’(7'+1 =

i |Tin,n+1| ot

gt

k™
|T" n+1 Z / /S" . (0,t))nydodt,

| 1en ()

. 1
where n;; denotes the unit outer normal to SZ’"+ .

4. Perform the L? projection of these values onto 7, and get piecewise constant

values (uf ) crn+1.

By the same reasoning as in the first order case we get for the overall scheme the

following formula:

1 /
n+1 _ n,n
U, = — E L"u
¢ |Ti”+1| AT h

JEK™mH1(d)

tn+1

1
|T”+1 Z / /n n+1 v(o,t))n;jdodt.

jEKD n+1( )

In order to get a feasible numerical method we have to approximate the flux
integrals by appropriate quadrature rules. Similar to Nessyahu and Tadmor [8] we
assume the time step to be small enough such that the solution of the generalized

Riemann problem is smooth across the edges . Hence, the solution satisfies

n,n+1
Sij
the PDE in a classical pointwise sense on those interfaces. Therefore, we can use

the midpoint rule to approximate the time integral

tn—(-l

v(o,t))n;;dodt

n s™ n+1

= k" / fv(o,t™ + 0.5k™))n;;do + O((k™)3).
grmtt

ij



In order to express v(o,t"™ + 0.5k™) in terms of values at time level t” we use
Taylor’s expansion and get for x € SZ-’"H

v(z,t" + 0.5k") = o(z,t") + %k"@tv(w,t") + O((k™)?)

= (e, ") = Sk divf oz, 7)) + O((K")?)
1 d
= o) = 3K S SR @) IR () + O((R).

Using again an appropriate quadrature rule (e.g. trapezoidal rule) to approximate
the spatial integral we end up with the following predictor-corrector form of our
second order central scheme which is the generalization of the Nessyahu-Tadmor

scheme to unstructured staggered grids in any spatial dimension.

Definition (Second order staggered Lax-Friedrichs scheme) Define an approxi-
mation up, to the solution of (1), (2) by the following scheme.

For i € I° set

0 1

D= — dz.
CE T ug(x)dz

For given values u?, i € I" define values u]*', i € I"*! by

d
+l ].
U’ uj — k" > AL R (2ik)) O, LM (2i58),

1
+1
u:l - |Tn+1 Z /"

n+1
JEK™mH1(4) NT;

En lL(z,J) )
+ +
S IS e e

P LRyt

where for all i € I"t! and j € K" (i) L(i, ) denotes the number of integration

n,n+1 L(w)
Sij

points 2;;; on with positive weights w;jr such that >, )" wijr = 1. Finally,

also in the second order case we define the discrete solution as

up(z,t) =u fort € [t",t" [ and z € T



3 Implementation and numerical experiments

We finally implemented the second order scheme in two spatial dimensions based
on a primal triangular mesh for even time steps and on a dual - Donald type -
mesh for odd time steps (see Fig. 1). The grid adaption is performed solely at
the even timesteps on the primal triangular grid where we use the theoretical a
posteriori result of the first order method for our adaption strategy (see also [6]).
The corresponding adaptive dual mesh is then implicitly given as the dual mesh of
the adaptive triangulation. This particular choice of meshes allows us to use the well
known MUSCL-type reconstruction of Durlofsky, Engquist and Osher [3] together
with some modified superbee limiter on the primal triangulation and a reconstruction
of Sonar [9] with the Barth-Jesperson limiter on the dual mesh in order to obtain

the second order method.

The following numerical experiments show that the second order central scheme
produces at least as good results as an second order upwind method does (see also
[5]). In addition, a comparison with calculations on a uniform grid demonstrate the
efficiency of the adaptive scheme.

3.1 Linear advection problems
Let us consider the linear conservation law (1) where f(u) = (u,0)" together with

either discontinuous or smooth initial data. For the discontinuous case we choose
the characteristic function of a square given by

1, if 03<xz1<04,02< x5 <0.3,
uo(w) = 0, else ’

while in the smooth case we choose a global C'-function given by

_ [ 012 =32 +1), if r:=10y/(z; —0.3)2+ (z2 — 0.25)2 < 1
uo(z) = 0 else

In both cases the exact solution is u(z,t) = ug(z1 — t,x2)-

Figures 2 and 4 show the numerical solutions of the adaptive higher order central
scheme in both cases, when the initial condition is discontinuous or smooth. In the
corresponding diagrams (Fig. 3 and Fig. 5) we compare the uniform and adap-
tive higher order central scheme with an higher order upwind scheme. The results

demonstrate, that the central scheme on uniform meshes behaves at least as good
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Figure 2: Linear advection of the characteristic function of a square (¢t = 0.0 on the
left hand side and ¢ = 0.4 on the right hand side). The upper pictures show the
isolines of the solution, while the staggered adaptive computational grids are shown
at the bottom.
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Figure 3: L' error versus CPU time for the linear advection of a characteristic func-
tion. Comparison between uniform second order upwind method, uniform second
order central scheme and adaptive second order central scheme.

as an second order upwind method does. In addition, one can gain a lot in efficiency

by using adaptive methods.

3.2 A Burgers type problem

Let us consider the nonlinear conservation law (1) together with the initial condition
(2) in R?, where

W _f 2, if ;E2_05<0
f(u)_( 2) and UO(Z')—{ 1, if w1—5wz_0_5>0
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Figure 4: Linear advection of a smooth (C!) function (¢ = 0.0 on the left hand side
and ¢t = 0.4 on the right hand side). The upper pictures show the isolines of the
solution, while the staggered adaptive computational grids are shown at the bottom.
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Figure 5: L! error versus CPU time for the linear advection of a smooth function.
Comparison between uniform second order upwind method, uniform second order
central scheme and adaptive second order central scheme.

Then the exact solution of this Burgers type problem is

2, if ;T2 _ 05 <3¢

2
1, it @fe 05> 3

In Figure 6 the adaptive refined dual grid of the second order central scheme together
with a color shading of the discrete solution is shown at ¢ = 0 and ¢ = 0.1 At the
left hand side of Figure 6 we compare the uniform and adaptive second order central
scheme with an second order upwind scheme. Also in this case the efficiency of the

adaptive central scheme is shown.



Figure 6: Burgers type convection of a shock (¢ = 0.0 on the left hand side and
t = 0.1 in the middle). The pictures show a color shading of the solution (red
= 2.0, blue = 1.0) together with the adaptive dual computational grid. At the
right hand side the L! error versus CPU time for the Burgers type convection of a
step function is shown. Comparison between uniform second order upwind method,
uniform second order central scheme and adaptive second order central scheme.
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